The generator matrix

 1  0  0  1  1  1  0  1  1  X  X  1  1  0 X^2 X^2+X  1  1  1  1  1  1  X  1  0 X^2+X X^2  1  1  1  1 X^2+X  1  1  1  1 X^2 X^2  1  X  1  0  0  1  1  0  1
 0  1  0  0  1 X+1  1 X^2+X X^2+X+1  1  0 X^2+1 X^2  1  1  0 X^2+X+1 X^2+X+1  0  X X^2+1 X^2  1  X X^2  1  1 X^2+X+1 X+1 X^2+X  0  1  X X^2+X  1  1  X  0 X^2+X  1 X^2+1  1  1  0 X^2+X X^2+X X^2
 0  0  1  1 X+1  0  1  1 X^2+X+1 X^2+X  1 X^2 X^2+X X+1 X^2+X  1 X^2+X X+1  0 X^2+1  0 X+1 X^2+1 X^2+X+1  1  X X^2+1 X^2+1 X^2+1 X^2  0 X^2+X+1 X^2 X+1 X^2+X+1  0  1  1  1  X X^2+X X^2  1  1 X^2+1  1  0
 0  0  0  X  X X^2 X^2+X X^2+X X^2+X  0 X^2+X X^2+X X^2+X X^2 X^2+X X^2 X^2+X X^2 X^2+X X^2 X^2  0  0 X^2+X  X X^2+X  X  0  X X^2  0 X^2  X  0  0  X  X  0  0 X^2  X X^2+X  0  X  X X^2+X  X
 0  0  0  0 X^2  0 X^2 X^2  0 X^2  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2  0 X^2  0  0  0  0  0  0 X^2 X^2  0 X^2 X^2  0 X^2  0  0  0

generates a code of length 47 over Z2[X]/(X^3) who�s minimum homogenous weight is 41.

Homogenous weight enumerator: w(x)=1x^0+102x^41+212x^42+332x^43+419x^44+408x^45+448x^46+474x^47+406x^48+320x^49+308x^50+246x^51+175x^52+124x^53+56x^54+30x^55+21x^56+2x^57+6x^59+2x^60+4x^61

The gray image is a linear code over GF(2) with n=188, k=12 and d=82.
This code was found by Heurico 1.16 in 0.507 seconds.